Fairness and machine learning

Limitations and Opportunities

Solon Barocas, Moritz Hardt, Arvind Narayanan

The book has been published.

A PDF of the full book is available.

CONTENTS
Preface
Acknowledgments
1 Introduction PDF
2 When is automated decision making legitimate? PDF
We explore what makes automated decision making a matter of normative concern, situated in bureaucratic decision making and its mechanical application of formalized rules.
3 Classification PDF
We introduce formal non-discrimination criteria in a decision-theoretic setting, establish their relationships, and illustrate their limitations.
4 Relative notions of fairness PDF
We explore the normative underpinnings of objections to systematic differences in the treatment of different groups and inequalities in the outcomes experienced by these groups.
5 Causality PDF
We dive into the technical repertoire of causality and how it helps articulate and address shortcomings of the classification paradigm, while raising new conceptual and normative questions.
6 Understanding United States anti-discrimination law PDF
We discuss what United States anti-discrimination law is and isn’t, how it navigates tradeoffs, its limits, and how it applies to machine learning.
7 Testing discrimination in practice PDF
We systematize tests of discrimination and discuss the practical complexities of applying them, both to traditional decision-making systems and to algorithmic systems.
8 A broader view of discrimination PDF
We review structural, organizational, and interpersonal discrimination in society, how machine learning interacts with them, and discuss a broad set of potential interventions.
9 Datasets PDF
Datasets are the backbone of machine learning research and development. We critically examine their role, the harms associated with data, and survey improvements in data practices.
Exercises and Discussion Prompts
We provide an online-only set of exercises and discussion prompts on a range of topics covered throughout the textbook.

Video tutorials

Course materials

Contact us

We welcome your feedback, questions, and suggestions. You can reach us at contact@fairmlbook.org. If you taught from the book, we’d love to hear about it.

Citations, license, typesetting

To cite this book, please use this bibtex entry:

@book{barocas-hardt-narayanan,
  title = {Fairness and Machine Learning: Limitations and Opportunities},
  author = {Solon Barocas and Moritz Hardt and Arvind Narayanan},
  publisher = {MIT Press},
  year = {2023}
}
Last updated: Fri Nov 10 22:36:26 CET 2023